evopapers

Papers in computational evolutionary biology

Does evolutionary plasticity evolve?

with one comment

Andreas Wagner Does evolutionary plasticity evolve? Evolution 50(3), 1996. pdf

The focus is on epigenetic buffering of mutations, the phenomenon called here (perhaps unfortunately) evolutionary plasticity. With the help of a simple computational model of regulatory networks, Wagner shows that the plasticity can increase when the network’s stable state is put under stabilising selection. This is an indication that stabilising selection can alone explain the canalisation observed in real regulatory networks.

A regulatory network is modelled as a discrete-time dynamical system, which in turn is encoded as a real matrix. The matrix together with an initial state determines the steady state (if any), which is treated as a phenotype. Matrices “evolve” through recombination (swapping rows between pairs of different matrices), mutation (random alteration of entries) and stabilising selection (deviations from the target steady state are punished). Epigenetic stability of such networks was assessed before and after 400 rounds of evolution, and found to have increased significantly in the process. In addition, the evolved networks converge to their stable states much faster.

Apart from the valuable scientific findings, the paper is notable for the dilligence with which Wagner (now heading a successful lab in Zurich) sets up and carries out his experiments. For example, networks and their stable states are chosen independently; and stability is assessed with respect to the original mutation constructs and an additional one, which was not used during the simulated evolution. While this is perhaps no more than good practice, it is still good to see these measures taken.

Advertisements

Written by evopapers

April 28, 2010 at 13:18

Posted in other

Tagged with ,

One Response

Subscribe to comments with RSS.

  1. […] and Bergman build on the earlier work of A.Wagner (reviewed below), who showed that canalisation in (models of) gene networks  may evolve as a by-product of […]


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: